玫瑰星云金价比例_玫瑰星云2244
玫瑰星云(NGC 2237),是一个的巨大氢Ⅱ区,位于麒麟座一个庞大分子云的末端。该星团与星云距离地球大约5200光年,直径大约为130光年。星云的质量估计约有10,000倍太阳质量。
美丽的玫瑰星云NGC 2237,是一个距离我们三千光年的大型发射星云。星云中心有一个编号为NGC 2244的疏散星团,而星团恒星所发出的恒星风,已经在星云的中心吹出一个大洞。这些恒星大约是在四百万年前从它周围的云气中形成的,而空洞的边缘有一层由尘埃和热云气的隔离层。 这团热星所发出的紫外光辐射,游离了四周的云气,使它们发出辉光。星云内丰富的氢气,在年轻亮星的激发下,让NGC 2237在大部份照片里呈现红色的色泽。这张影像最特殊的特征,是它的色彩和常见的玫瑰星云照片不同。透过氢所发出的红光,氧所发出的绿光,以及硫所发出的蓝光等波段的滤镜,天文学家对玫瑰星云拍照,然后再加以组合,合成上面这张美丽的影像。影像中,我们也可以清楚看见,散布在云气中的暗黑丝状尘埃带。最近天文学家在玫瑰星云内,发现了一些快速移动的分子团,不过它们的起源仍是未知。 玫瑰星云位在南天的麒麟座,它的大小约有100光年,距离我们约5000光年,用小型的望远镜就能看到它。 (NGC 2237)是一个的巨大氢Ⅱ区,位于麒麟座一个庞大分子云的末端。这个分子云集团包括NGC 2237、NGC 2238、NGC 2239、NGC 2244、NGC 2246五个NGC天体。疏散星团NGC 2244与玫瑰星云关系相当密切,NGC 2244内的恒星是由玫瑰星云的物质所形成的。该星团与星云距离地球大约5200光年,直径大约为130光年。星云的质量估计约有10,000倍太阳质量。 研究 玫瑰星云NGC 2244的恒星团不是所有的玫瑰星云都是红色的,但它们还是非常漂亮。在天象图中,美丽的玫瑰星云和其它恒星形成区域总是以红色为主,-部分因为在星云中
玫瑰星云
占据支配的发射物是氢原子产生的。氢原子强烈的可见光线-H-alpha,是光谱中的一个红色光波段,但漂亮的发射星云不仅仅需要红光。星云中其它原子也被高能量的星光激发,也形成了窄波发射光线。在这张绚丽的玫瑰星云中心区域图像中,窄波图像是合成,硫原子发出的红光,氢原子放射出蓝光,氧原子放射出绿光。事实上,利用这些窄波原子放射光线表示颜色的方法,也被用在许多哈勃拍摄的恒星孕育场图像中。这张图像在麒麟座中横跨大约50光年,位于估计距离3,000光年远的玫瑰星云中。一般认为在恒星形成之后,O型与B型恒星的恒星风造成的压力压缩了星际云团。钱德拉X射线天文台在2001年的观测证实玫瑰星云的中心拥有非常炙热且年轻的恒星。 星云内丰富的氢气,在年轻亮星的激发下,让NGC 2237在大部份照片里呈现红色的色泽。透过氢所发出的红光,氧所发出的绿光,以及硫所发出的蓝光等波段的滤镜,天文学家对玫瑰星云拍照,然后再加以组合,合成这些美丽的影像。影像中,我们也可以清楚看见,散布在云气中的暗黑丝状尘埃带。最近天文学家在玫瑰星云内,发现了一些快速移动的分子团,不过它们的起源仍是未知。 观测
玫瑰星云
“宇宙情花”玫瑰星云2009年2月广东有天文爱好者凭借天文望远镜和数码相机,拍下了被誉为“情花”的玫瑰星云的倩影。 广州天文爱好者何建国远赴佛山市高明区一个僻静的小乡村,用天文望远镜拍下玫瑰星云。从中可以看到,这个星云宛如一朵绽放的玫瑰,美轮美奂。这么美丽的星云,人们平时很难用肉眼看到,只有通过相机的长时间曝光,星云原本暗弱的光亮在积聚后才能逐步呈现出亮丽的色彩。 当玫瑰星云不是红色 当然,不是所有的玫瑰都是红色的,但它们还是非常漂亮。然而在天象图中,美丽的玫瑰星云和其它恒星形成区域总是以红色为主-部分因为在星云中占据支配的发射物是氢原子产生的。氢原子强烈的可见光线-H-alpha,是光谱中的一个红色光波段,但漂亮的发射星云不仅仅需要红光。星云中其它原子也被高能量的星光激发,也形成了窄波发射光线。在这张绚丽的玫瑰星云中心区域图像中,窄波图像是合成,硫原子发出的红光,氢原子放射出蓝光,氧原子放射出绿光。事实上,利用这些窄波原子放射光线表示颜色的方法,也被用在许多哈勃拍摄的恒星孕育场图像中。这张图像在麒麟座中横跨大约50光年,位于估计距离3,000光年远的玫瑰星云中。
猫眼星云(Cat's Eye Nebula, NGC 6543)为一行星状星云,位于天龙座。这个星云特别的地方,在于其结构几乎是所有有记录的星云当中最为复杂的一个。从哈勃太空望远镜拍得的图像显示,猫眼星云拥有绳结、喷柱、弧形等各种形状的结构。 现代的研究揭开不少有关猫眼星云的谜团,有人认为星云结构之所以复杂,是来自其连星系统中主星的喷发物质,但至今尚未有证据指其中心恒星拥有伴星。另外,两个有关星云化学物质量度的结果出现重大差异,其原因目前仍不明。这个星云是最被广为研究的星云之一,它的视星等为+8.1,拥有高表面光度。其赤经及赤纬分
猫眼星云
别为17h 58.6m及+66°38',其高赤纬度代表北半球的观测者可较易看到。不少大型望远镜均坐落于北半球地区范围,由于该星云处于接近正北黄极点的位置,在良好天气的情况下,只要在黄极点附近寻找,应该不难找到。
直径方面,较亮的内星云部分直径约为20角秒,其扩张星云晕物质直径约为386角秒(6.4角分)。它的星云晕物质是原有恒星演化为红巨星阶段时喷出的。
根据观测结果,星云主体的密度约为每立方厘米有5,000颗粒子,温度约为8,000 K1,外层星云晕的温度更高,达15,000 K,而密度方面则比内部更低。
星云中央拥有一颗O型恒星,其温度约为80,000 K,光度约为太阳的10,000倍,半径为太阳的0.65倍。据光谱学分析,由于受恒星风的影响,中央恒星的质量正以每秒20兆吨的速度不断流失,相等于每年3.2×10?7太阳质量,恒星风的风力时速为每秒1,900公里。根据计算结果,中央恒星的质量与太阳差不多,约为一个太阳质量,演化前的恒星质量估计约为太阳的五倍。
编辑本段星云观测
该星云于1786年2月15日由威廉·赫歇尔(William Herschel)首先发现,同时是首个以光谱仪
猫眼星云
进行观测的行星状星云,于1864年由威廉·赫金斯进行,他观测到星云气体极为稀薄。除此以外,人们还以电磁波谱对之进行观测。
红外线观测
猫眼星云释出的红外线给人们进一步观测,其分析结果证实它存在低温星际尘埃,人们相信这些尘埃是在恒星演化末期阶段形成的,尘埃吸收恒星光线,并以红外线释出,光谱显示这些尘埃的温度约为70 K。
除了低温尘埃之外,星云释出的红外线也使人们发现它存在非离子物质,包括氢分子(H2)。一般行星状星云也存在非离子物质,但不少均在恒星远处方能找到。而猫眼星云则不然,它的非离子物质存在于外晕的内层边缘,且能发出光线,这可能是因冲击波把氢分子刺激,使它们以不同的速度互相撞击。
编辑本段可见光及紫外线观测
人们也对星云释出的可见光及紫外线作观测,并以光谱分析为数较多的个别波长光线,这些光线让人知道猫眼星云的复杂结构。
本文所用的彩色哈勃望远镜图像均配上假色,色彩分布按区域的离子数量多少来区别,滤波器波长为单离子氢的656.3 nm、单离子氮的658.4 nm及双离子氧的500.7 nm。虽然星云的真正色彩为红及录色,但图像配上红蓝绿三色去区别,当中星云边绿两端均为离子较少的物质。
编辑本段X射线观测
人们近年也开始以量度星云释出的X射线波长去观测,据昌德拉X射线望远镜(Chandra X-ray Observatory)的观测结果,猫眼星云存在温度极高的气体,本文顶部的便是结合了哈勃望远镜的可见光
猫眼星云
图像及昌德拉望远镜的X射线图像。人们认为这些炽热气体是透过星云释出物质受到恒星风的激烈吹袭,同时也使星云内层泡沫状物质的一部分给恒星风挖走。
此外,昌德拉望远镜也在星云中心恒星的位置,找到一个X射线的源头点。由于人们预期这颗恒星不会释出强大的X射线,因此难以解释这个放出X射线的源头点,其中一个说法是连星系统存在的高温恒星物质吸积盘,因而产生X射线。
编辑本段与地球距离
要准确量度行星状星云与地球距离是天文学之中存在多时的难题之一,人们通常是以假设去估计,其结果可以很不准确。
近代的哈勃望远镜使人们能以新方法去测定距离,由于任何行星状星云的大小均正在膨张,因此在相距多年的时间,以高角距解像度的望远镜,可透过角距的改变看到星云的增大。事实上,星云的膨胀速度并不明显,每年仅增长数角秒或以下,透过光谱观测及多普勒效应,可计算星云的膨胀速度及其与地球的距离。
据哈勃望远镜多年来的观测结果,猫眼星云以每年10角毫秒的速度膨胀,在速度上则为每秒16.4公里,把这些结果以正弦计算,可得出猫眼星云距离地球大约1,000秒差(3×10^19 m)。
编辑本段星云年龄
角距膨胀除了可计算距离外,也可推断星云的年龄。假设星云膨胀速率不变,现时的角距为20角秒,每年增长速度为10角毫秒,将之相除可得到该星云大约于1,000年前出现。由于星云释出物质的速度会因遇到上代恒星残余物质或星际物质而减慢,因此上述估计数字或会是星云的年龄上限。
编辑本段物质构成
与不少天体一样,猫眼星云的物质主要为氢和氦,并拥有少量重元素。这些元素可以光谱分析去量度其存在比例,由于氢是最丰富的元素,因此其他重元素的比例均会以相对于氢的数值去表示。
由于望远镜使用的摄谱仪不会收集来自观测目标的所有光线,也不会使用细小光圈去聚集物体光线,因此多个有关星云化学元素比例的研究结果均会有出入,每个不同的结果可代表星云的某一部分。
在多个计算结果当中,人们普遍相信它的氦元素比例约为氢的0.12倍,碳和氮的比例均为氢的3×10?4倍,氧的比例约为氢的7×10?4倍。受到核合成的影响,重元素得以在恒星爆发成行星状星云以前,于恒星外层大气聚集,使之与不少行星状星云一样,碳、氮和氧元素均为除氢以外,所占比重较多的元素,比太阳的相同重元素要多。
在对猫眼星云进行更深入观测所得结果当中,或已显示星云的一小部分物质拥有丰富的重元素,这点会在以下段落详述。
编辑本段星云运动及形态
猫眼星云拥有极为复杂的结构,人们至今仍未完全明白其形态的形成机制。
星云的光亮部分主要是中央恒星释出的恒星风及星云形成时射出的物质相碰撞而成的,两者间的撞击产生上述的X射线,恒星风也使星云内层泡沫状物质的一部分给挖走,这个情况在内层两端均有发生。
人们也怀疑星云的中央恒星为一连星系统,一颗恒星吸取另一颗恒星物质的过程形成一吸积盘,并在物质受方恒星两极射出喷流,这些喷流又与先前射出的物质碰撞。由于天体进动(岁差)的关系,恒星的两极喷流方向会随时间而改变。
人们在内星云光亮部分的外部,找到不少同中心的环状物体,他们认为可能在恒星演变在行星状星云前,在赫罗图中的渐进巨星分支(asymptotic giant branch)阶段便已出现。这些环状物体的半径具规则性,每两个环之间的半径差均相若,因此人们指出这些环的形成机制为于特定时间,并以差不多相同的发射速度进行。
再者,一大型暗晕膨胀至恒星远处,于星云形成前便已出现。
编辑本段现时谜题
人们纵使已作出深入研究,但至今仍有不少谜题有待解决。星云外层多个相同中心的环状物体的时间差距可能为数百年,现时仍难以解释。导致星云形成的热脉可能每隔数万年会发生一次,而较小的表面脉冲则每隔数年至数十年一次,星云会定时释出同中心环状物体的机制至今尚未有定论。
星云的光谱呈连续重叠的发射线状,这些发射线可能来自星云中离子之间发生的碰撞激发,或是离子再度与电子结合而形成的,当中因碰撞激发产生的发射线比电子融合的更强,因此成为多年来人们量度两者比例的方法。但近期研究结果指,在星云的光谱图中,离子与电子结合的发射线数量约为碰撞激发发射线的三倍1,其原因至今尚在争论中,有说法指是因为存在一些含丰富重元素的物质,或是星云温度的波动。
至少一个理论认为 猫眼星云是由两颗互绕的双星超新星爆发的产物,而这逐渐死去的双星在最近
1000年的时间里讲物质以恒星风的方式抛向外面。因为双星互绕,抛出的物质也因此被扭转成复杂的外形。中央星向外吹出的恒星风可能 造成内圈奇特的椭圆外形。围绕它的是恒星风造成的更大的瓣叶,而明亮的弓形与弯曲的结构则可能是气体喷流所造成的。双星互绕,使得这些喷流不稳定,而像灯塔般一明一暗,向不同的方向指去。(来自百度)
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。