氮化稀土合金价格走势_氮化处理价格
1.如何增加稀土抛光轮的磨削力
2.新材料产业“十二五”发展规划的重点材料
3.铁合金的作用都有哪些?
硬质合金刀具材料:在各种硬质合金刀具材料中,添加少量的稀土元素,均可有效地提高硬质合金的断裂韧性和抗弯强度。硬质合金的耐磨性和硬度也有一定的改善。因此,刀具在正常磨损下的使用寿命得以延长,抗冲击性能能够提高。稀土元素蕴藏量丰富,价格也不贵,故这种硬质合金刀具材料极有应用前景。
超硬刀具材料:主要是指金刚石刀具和立方氮化硼(CBN)刀具,属于刀具材料的新产品,在解决难加工材料的切削、提高生产效率、保证加工精度、降低生产成本方面具有明显的优势。随着,数控机床技术的不断发展越来越的行业需要超硬刀具,并且最近美国专家研发出了一种立方氮化硼超硬刀具材料比金刚石的硬度还要硬。
如何增加稀土抛光轮的磨削力
稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素,称为稀土元素(Rare Earth)。简称稀土(RE或R)。 根据稀土元素间物理化学性质,稀土类元素分为轻、重两组。 1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕。 2)重稀土(又称钇组):钆、铽、镝、钬、铒、铥、镱、镥、钪、钇。 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 铈(Ce) "铈"这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星--谷神星。 铈的广泛应用: (1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨. (2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。 (3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。 (4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。 钇(Y) 1788年,一位以研究化学和矿物学、收集矿石的业余爱好者瑞典军官卡尔·阿雷尼乌斯(Karl Arrhenius)在斯德哥尔摩湾外的伊特必村(Ytterby),发现了外观象沥青和煤一样的黑色矿物,按当地的地名命名为伊特必矿(Ytterbite)。1794年芬兰化学家约翰·加多林分析了这种伊特必矿样品。发现其中除铍、硅、铁的氧化物外,还含有38%的未知元素的氧化物枣"新土"。1797年,瑞典化学家埃克贝格(Anders Gustaf Ekeberg)确认了这种"新土",命名为钇土(Yttria,钇的氧化物之意)。 钇是一种用途广泛的金属,主要用途有: (1)钢铁及有色合金的添加剂。FeCr合金通常含0.5-4%钇,钇能够增强这些不锈钢的抗氧化性和延展性;MB2金中添加适量的富钇混合稀土后,合金的综合性能得到明显的改善,可以替代部分中强铝合金用于飞机的受力构件上;在Al-Zr合金中加入少量富钇稀土,可提高合金导电率;该合金已为国内大多数电线厂采用;在铜合金中加入钇,提高了导电性和机械强度。 (2)含钇6%和铝2%的氮化硅陶瓷材料,可用来研制发动机部件。 (3)用功率400瓦的钕钇铝石榴石激光束来对大型构件进行钻孔、切削和焊接等机械加工。 (4)由Y-Al石榴石单晶片构成的电子显微镜荧光屏,荧光亮度高,对散射光的吸收低,抗高温和抗机械磨损性能好。 (5)含钇达90%的高钇结构合金,可以应用于航空和其它要求低密度和高熔点的场合。 (6)目前倍受人们关注的掺钇SrZrO3高温质子传导材料,对燃料电池、电解池和要求氢溶解度高的气敏元件的生产具有重要的意义。此外,钇还用于耐高温喷涂材料、原子能反应堆燃料的稀释剂、永磁材料添加剂以及电子工业中作吸气剂等。
新材料产业“十二五”发展规划的重点材料
1、首先选择在湿润环境的磨削条件可以提高稀土抛光轮的粗糙度,在油脂酸与硬脂酸的混合液中浸入CBN砂轮,可以起到抛光和湿润的效果。
2、然后选用粒度比较细腻的CBN砂轮可以提高工件表面的磨削质量,改善工件的粗糙度。
3、最后采用优质立方氮化硼CBN作为磨削也有助于增加稀土抛光轮的磨削力。
铁合金的作用都有哪些?
稀土功能材料。以提高稀土新材料性能、扩大高端领域应用、增加产品附加值为重点,充分发挥我国稀土资源优势,壮大稀土新材料产业规模。大力发展超高性能稀土永磁材料、稀土发光材料,积极开发高比容量、低自放电、长寿命的新型储氢材料,提高研磨抛光材料产品档次,提升现有催化材料性能和制备技术水平。
稀有金属材料。充分发挥我国稀有金属资源优势,提高产业竞争力。积极发展高纯稀有金属及靶材,大规格钼电极、高品质钼丝、高精度钨窄带、钨钼大型板材和制件、高纯铼及合金制品等高技术含量深加工材料。加快促进超细纳米晶、特粗晶粒等高性能硬质合金产业化,提高原子能级锆材和银铟镉控制棒、高比容钽粉、高效贵金属催化材料发展水平。
半导体材料。以高纯度、大尺寸、低缺陷、高性能和低成本为主攻方向,逐步提高关键材料自给率。开发电子级多晶硅、大尺寸单晶硅、抛光片、外延片等材料,积极开发氮化镓、砷化镓、碳化硅、磷化铟、锗、绝缘体上硅(SOI)等新型半导体材料,以及铜铟镓硒、铜铟硫、碲化镉等新型薄膜光伏材料,推进高效、低成本光伏材料产业化。
其他功能合金。加快高磁感取向硅钢和铁基非晶合金带材推广应用。积极开发高导热铜合金引线框架、键合丝、稀贵金属钎焊材料、铟锡氧化物(ITO)靶材、电磁屏蔽材料,满足信息产业需要。促进高强高导、绿色无铅新型铜合金接触导线规模化发展,满足高速铁路需要。进一步推动高磁导率软磁材料、高导电率金属材料及相关型材的标准化和系列化,提高电磁兼容材料产业化水平。开发推广耐高温、耐腐蚀铁铬铝金属纤维多孔材料,满足高温烟气处理等需求。 专栏4 特种金属功能材料关键技术和装备 01 稀土功能材料技术开发高纯稀土金属集成化提纯、磁能积加矫顽力大于65的永磁材料、高容量大功率储能材料、稀土合金快冷厚带等生产技术。 02 稀有金属材料技术开发多元合金熔炼、大型合金铸锭成分均匀化控制、中间合金制备、超高纯(≥6N)金属加工及清洗、大尺寸超高纯金属靶材微观组织控制、硬质合金全致密化烧结及涂层沉积定向控制等技术。 03 半导体材料技术实现8英寸、12英寸硅单晶生长及硅片加工产业化,突破12英寸硅片外延生长等技术,开发多晶硅绿色生产工艺。 04 其他功能合金技术开发新一代非晶带材高速连铸工艺、薄规格(0.18-0.20mm)高磁感取向硅钢生产技术、超细超纯铜合金制备加工工艺。 05 特种金属功能材料关键装备12-18英寸硅单晶生长的直拉磁场单晶炉,线切割机,高频电磁感应快速加热装置,等静压成套设备,大尺寸、超高真空、超高温烧结炉,熔盐电解精炼设备,高功率电子束熔炼炉,大型化学气相沉积炉等。 特种橡胶。自主研发和技术引进并举,走精细化、系列化路线,大力开发新产品、新牌号,改善产品质量,努力扩大规模,力争到2015年国内市场满足率超过70%。扩大丁基橡胶(IIR)、丁腈橡胶(NBR)、乙丙橡胶(EPR)、异戊橡胶(IR)、聚氨酯橡胶、氟橡胶及相关弹性体等生产规模,加快开发丙烯酸酯橡胶及弹性体、卤化丁基橡胶、氢化丁腈橡胶、耐寒氯丁橡胶和高端苯乙烯系弹性体、耐高低温硅橡胶、耐低温氟橡胶等品种,积极发展专用助剂,强化为汽车、高速铁路和高端装备制造配套的高性能密封、阻尼等专用材料开发。
其他功能性高分子材料。巩固有机硅单体生产优势,大力发展硅橡胶、硅树脂等有机硅聚合物产品。着力调整含氟聚合物产品结构,重点发展聚全氟乙丙烯(FEP)、聚偏氟乙烯(PVDF)及高性能聚四氟乙烯等高端含氟聚合物,积极开发含氟中间体及精细化学品。加快电解用离子交换膜、电池隔膜和光学聚酯膜的技术开发及产业化进程,鼓励液体、气体分离膜材料开发、生产及应用。大力发展环保型高性能涂料、长效防污涂料、防水材料、高性能润滑油脂和防火隔音泡沫材料等品种。 专栏7 先进高分子材料关键技术和装备 01 核心技术加强基础聚合物制备、集成创新和成套工艺技术研究,开发分子结构设计、分子量控制及工艺参数控制等先进聚合技术。加快PA6高压前聚工艺技术、PBT直接酯化法生产技术、PC酯交换和PI技术产业化。突破φ4000mm甲基流化床、φ1200mm苯基沸腾床等有机硅单体合成技术。开发反应体系配方设计和后处理工艺,材料改性和加工成型技术以及配套助剂,可降解及回收材料技术等。 02 关键装备开发大型在线检测控制聚合反应器、流化干燥床、脱气釜、汽提釜、直接脱挥装置、螺杆聚合反应器、先进混炼机、专用模具、高速挤出和大型注射成型设备、大型无水无氧聚合反应器等。 先进陶瓷。重点突破粉体及先驱体制备、配方开发、烧制成型和精密加工等关键环节,扩大耐高温、耐磨和高稳定性结构功能一体化陶瓷生产规模。重点发展精细熔融石英陶瓷坩埚、陶瓷过滤膜和新型无毒蜂窝陶瓷脱硝催化剂等产品。积极发展超大尺寸氮化硅陶瓷、烧结碳化硅陶瓷、高频多功能压电陶瓷及超声换能用压电陶瓷。大力发展无铅绿色陶瓷材料。建立高纯陶瓷原料保障体系。
特种玻璃。以满足建筑节能、平板显示和太阳能利用等领域需求为目标,加快特种玻璃产业化,增强产品自给能力。重点发展平板显示玻璃(TFT/PDP/OLED),鼓励发展应用低辐射(Low-E)镀膜玻璃、涂膜玻璃、真空节能玻璃及光伏电池透明导电氧化物镀膜(TCO)超白玻璃。加快发展高纯石英粉、石英玻璃及制品,促进高纯石英管、光纤预制棒产业化。积极发展长波红外玻璃、无铅低温封接玻璃、激光玻璃等新型玻璃品种。
其他特种无机非金属材料。巩固人造金刚石和立方氮化硼超硬材料、激光晶体和非线性晶体等人工晶体技术优势,大力发展功能性超硬材料和大尺寸高功率光电晶体材料及制品。积极发展高纯石墨,提高锂电池用石墨负极材料质量,加快研发核级石墨材料。大力发展非金属矿及其深加工材料。开发高性能玻璃纤维、连续玄武岩纤维、高性能摩擦材料和绿色新型耐火材料等产品。加快推广新型墙体材料、无机防火保温材料,壮大新型建筑材料产业规模。 专栏8 新型无机非金属材料关键技术和装备 01 先进陶瓷技术开发高纯超细陶瓷粉体及先驱体制备、陶瓷蜂窝结构设计技术。 02 特种玻璃技术开发超薄玻璃基板成型、低辐射镀膜玻璃膜系设计与制备、高纯石英粉(≥5N)合成和光纤管(金属杂质<1ppm)制备技术、电子专用石英玻璃及制品制备技术、6代以上TFT-LCD玻璃基板及OLED玻璃基板制备技术。 03 其他特种无机非金属材料技术开发高纯石墨(≥4N)电加热连续式化学提纯、高温连续式绝氧气氛窑生产、柔性石墨碾压法和挤压法加工技术,半导体用石墨保温材料加工技术,人工晶体生长及加工等技术。 04 新型无机非金属材料关键装备开发6代以上TFT-LCD用玻璃基板窑炉,气氛加压陶瓷烧结炉,超硬材料用大型压机、大功率(30-100kw)微波等离子体和超大面积(150-300mm)热灯丝CVD金刚石膜成套装备,高纯石墨用高温(3000-3500℃)各项同性等静压机,(炉内氧含量≤1000ppm)连续式绝氧气氛窑,石墨负极材料包覆和炭化装备等。 树脂基复合材料。以低成本、高比强、高比模和高稳定性为目标,攻克树脂基复合材料的原料制备、工业化生产及配套装备等共性关键问题。加快发展碳纤维等高性能增强纤维,提高树脂性能,开发新型超大规格、特殊结构材料的一体化制备工艺,发展风电叶片、建筑工程、高压容器、复合导线及杆塔等专用材料,加快在航空航天、新能源、高速列车、海洋工程、节能与新能源汽车和防灾减灾等领域的应用。 专栏9 高性能增强纤维发展重点 01 碳纤维加强高强、高强中模、高模和高强高模系列品种攻关,实现千吨级装置稳定运转,提高产业化水平,扩大产品应用范围。 02 芳纶扩大间位芳纶(1313)生产规模,突破对位芳纶(1414)产业化瓶颈,拓展在蜂巢结构、绝缘纸等领域的应用。 03 超高分子量聚乙烯纤维积极发展高性能聚乙烯纤维(UHMWPE)干法纺丝技术及产品,突破纺丝级专用树脂生产技术,降低生产成本。 04 新型无机非金属纤维积极发展高强、低介电、高硅氧、耐碱等高性能玻璃纤维及制品,大力发展连续玄武岩、氮化硼和岩棉等新型无机非金属纤维品种。 05 其他高性能纤维材料积极发展聚苯硫醚、聚[2,5-二羟基-1,4-苯撑吡啶并二咪唑]、芳砜纶、聚酰亚胺、对苯基并双恶唑纤维等新品种。 陶瓷基复合材料。进一步提高特种陶瓷基体和碳化硅、氮化硅、氧化铝等增强纤维,以及新型颗粒、晶须增强材料及陶瓷先驱体制备技术水平,加快在削切工具、耐磨器件和航空航天等领域的应用。
金属基复合材料。发展纤维增强铝基、钛基、镁基复合材料和金属层状复合材料,进一步实现材料轻量化、智能化、高性能化和多功能化,加快应用研究。 专栏10 高性能复合材料关键技术和装备 01 核心技术重点突破聚合、纺丝、预氧化、碳化等高性能聚丙烯腈基碳纤维产业化关键技术,芳纶纤维聚合、纺丝及溶剂回收技术等。开发陶瓷基复合材料烧结、渗透等制备加工技术,碳/碳复合材料液相浸渍、渗碳及快速制备工艺,开发纤维增强型树脂基复合材料缠绕、铺放、热融预浸、真空辅助树脂转移成型(VARTM)技术。 02 关键装备重点突破碳纤维用大容量聚合釜、饱和蒸汽牵伸、宽口径高温碳化、恒张力收丝装置,芳纶用耐强腐蚀高精度双螺杆聚合装置,复合材料用多轴缠绕机、热融预浸机、纤维铺放机、超高温热压成型设备。 纳米材料。加强纳米技术研究,重点突破纳米材料及制品的制备与应用关键技术,积极开发纳米粉体、纳米碳管、富勒烯、石墨烯等材料,积极推进纳米材料在新能源、节能减排、环境治理、绿色印刷、功能涂层、电子信息和生物医用等领域的研究应用。
生物材料。积极开展聚乳酸等生物可降解材料研究,加快实现产业化,推进生物基高分子新材料和生物基绿色化学品产业发展。加强生物医用材料研究,提高材料生物相容性和化学稳定性,大力发展高性能、低成本生物医用高端材料和产品,推动医疗器械基础材料升级换代。
智能材料。加强基础材料研究,开发智能材料与结构制备加工技术,发展形状记忆合金、应变电阻合金、磁致伸缩材料、智能高分子材料和磁流变液体材料等。
超导材料。突破高度均匀合金的熔炼及超导线材制备技术,提高铌钛合金和铌锡合金等低温超导材料工程化制备技术水平,发展高温超导千米长线、高温超导薄膜材料规模化制备技术,满足核磁共振成像、超导电缆、无线通信等需求。
铁合金作为炼钢脱氧剂,应用最广泛的是硅锰、锰铁和硅铁。强烈的脱氧剂为铝(铝铁)、硅钙、硅锆等(见钢的脱氧反应)。用作合金添加剂的常用品种有:锰铁、铬铁、硅铁、钨铁、钼铁、钒铁、钛铁、镍铁、铌(钽)铁、稀土铁合金、硼铁、磷铁等。各种铁合金又根据炼钢需要,按合金元素含量或含碳高低规定许多等级,并严格限定杂质含量。含有两种或多种合金元素的铁合金叫做复合铁合金,使用这类铁合金可同时加入脱氧或合金化元素,对炼钢工艺有利,且能较经济合理地综合利用共生矿石资源。常用的有:锰硅、硅钙、硅锆、硅锰铝、硅锰钙和稀土硅铁等。
炼钢用纯金属添加剂有铝、钛、镍和金属硅、金属锰、金属铬等。某些易还原的氧化物如MoO、NiO,也用于代替铁合金。此外,还有氮化铁合金,如经过氮化处理的铬铁、锰铁等,以及混有发热剂的发热铁合金等。
基本分类
铁合金的品种繁多,分类方法也多一般按下列方法分类:
(1)按铁合金中主元素分类,主要有硅,锰,铬,钒,钛,钨,钼等系列铁合金。
(2)按铁合金中含碳量的分类,有高碳,中碳,低碳,微碳,超微碳等品种。
(3)含有两种或者两种以上合金元素的多元铁合金,主要品种有硅铝合金,硅钙合金,锰硅铝合金,硅钙铝合金,硅钡钙合金等。
(4)按生产方法分类:有高炉铁合金,电炉铁合金,炉外法(金属热法)铁合金,真空固态还原铁合金,电解法铁合金,此外还有氧化物压块与发热铁合金等特殊铁合金。
硅铁、锰铁、硅锰、铬铁、钨铁、钒铁、镍铁、钼铁、钛铁、稀土镁硅、稀土硅铁、硅钙合金、硅钡合金、硅铝合金、钽铌、磷铁、硼铁等。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。