油价是谁定的_油价是谁管得孔的
1.汽车在什么情况下需要清洗喷油嘴?
2.什么是PVC?
3.汽车在行驶过程中突然熄火是怎么回事?
4.什么是可燃燃料?
5.如果把汽车天然气一套拆掉,改回烧油,发动机上打的孔怎么办?自己能拆除天然气这一套吗?
2021全年油价调整时间表出炉,我所在地的汕头油价有改变。不涨价了。国内成品油的价格就给广大群众带来一份不大不小的惊喜。在31号的最后一秒,国内成品油调价窗口结束了一年的任务,以上涨给2020画了一个句号。
历史背景:
从整个2020年的油价调整来看,6,7,8月三个月份经历了三次油价上调,而10-12月份则经历了夸张的五次上调,油价下调则集中于开年的几个月份,主要是2,3月份,经历了3次下调,9月和11月又经历两次下调,其他大部分时间则是搁浅的状态。
汽车在什么情况下需要清洗喷油嘴?
美国一百多年的石油工业史,也是一部科技发展史,每一次石油技术的革命无不与技术进步密切相关。
石油勘探开发技术革命的第一个时期是20世纪20~30年代,此时出现了大马力的钻机,有了新型牙轮钻头,有了化学处理剂来改进钻井液和固井水泥性能,提高了固井的质量;油气开采方面,不再延续初期的密集钻井、盲目滥采,开始懂得地下油藏是个统一的水动力系统,并提出了最大有效产量的概念作为衡量生产好坏的指标。
石油勘探开发技术革命的第二个时期是第二次世界大战之后,特别是20世纪60~70年代。新技术的不断涌现使得这个时期成为石油储量发现的黄金时期。在勘探技术方面,大量采用数字地震仪,多道多次覆盖技术,配以大容量高速计算机作数据处理,使油气勘探技术达到新的水平,在勘探程度高的老探区也不断扩大了储量;在钻井技术方面,实行“科学化钻井”,发展了喷射钻井、平衡钻井、定向钻井和优选参数钻井技术;在油田开采方面,广泛使用注水提高油层压力、大型水力压裂技术,三次采油(EOR)技术由室内转入现场试验,热力法也已经工业化推广,海上采油也有了很大进展。
石油勘探开发技术革命的第三个时期自20世纪80年代开始延续至今,这次技术革命以信息技术作为主要特征[37]。在勘探技术方面,地震分辨率不断提高,非地震方法重新兴起;在钻井技术方面,水平井、分支井技术不断发展;在油田开采方面,三次采油技术不断发展。
2.3.2.1 地震技术与美国油气勘探
1923年美国开始出现实验扭秤及折射地震仪,在美国墨西哥湾地区应用获得成功,该地区石油聚集与岩盐有关。盐体与围岩之间的弹性波旅行时差造成地震波的不同传播特征,盐体、盖岩和围岩之间的密度差则是扭秤测量的特征。这两种地球物理方法的应用导致许多盐丘油田的发现。
从1925年起,上述两种勘探方法在美国石油勘探中得到迅速推广。E.L.DeGolyer和Karcher成立的地球物理研究公司对机械式地震仪作了改进,以电磁式取代,又以精确的无线电信号测量方法取代声波法测定爆炸时间和距离,这提高了折射地震的勘探速度,降低了勘探成本。折射地震仪在美国得克萨斯州和路易斯安那州海湾地区推广应用后,四年发现了近40个盐丘。在1924~1929年间,折射地震勘探技术在墨西哥湾勘探中起着主导作用。
20世纪20年代末至30年代,地震反射法相继在俄克拉何马州、墨西哥湾、得克萨斯州和加利福尼亚州等地获得成功应用。1928年,在俄克拉何马州发现的Seminole油田,是单独依靠地震技术发现的第一个油田。1934年用地球物理方法在墨西哥湾北岸发现了Old Ocean油田,以后用地球物理方法在此地区相继发现了一系列油田。1937年用地球物理方法在伊利诺伊州发现了Salem特大油田;1938年在墨西哥湾发现了第一个海上油田——Creole油田。这些大发现确立了反射地震技术在油气勘探中的应用价值。
1940年以后,地震技术的革新使地震仪器和解释技术发生了许多变化,如采用自动增益控制的多道仪器,应用混波技术及连续剖面法,采用磁阻压检波器及大量检波器组合,直至20世纪50年代初模拟磁带记录系统投入使用。地震仪器以及勘探技术的发展,有助于对更深的油气储层和更复杂的油气圈闭进行勘探。
地震技术的不断改进,提高了复杂地区和深层的勘探能力,20世纪40年代以后,美国在发现大油气田数量急剧减少的情况下,相继发现了许多中小油气田。1950~1953年间,中小油气田年发现量达到近1.8亿吨。
20世纪60年代初地震技术的数字化变革使勘探技术发展产生了重大突破,开始了地震数字记录和数字处理的新时代。一些新技术(包括可控震源和共深度点覆盖)的应用,增加了地下覆盖的密度,提高了地震勘探精度。
地震数字记录和处理技术的优越性和潜力是模拟磁带技术无法比拟的,它所能完成的地震数据运算是模拟仪器难以实现的。20世纪60年代中期,数字地震技术逐步取代了常规地震勘探方法,使地震勘探的效率和勘探能力有了明显的提高,从而扩大了勘探领域和勘探深度,提高了勘探成功率。
20世纪70年代以后,地震技术的新进展使美国油气勘探工作进入了新时代。电子和计算机技术的发展,使勘探地球物理不断受益,成为地球物理勘探技术进步的重要基础。多道地震采集系统和多种纵波可控震源的开发和应用,以及其他非炸药震源的改进都大大增强了地震的勘探能力,三维地震技术改进了地下复杂构造和地层的成像,从而提高了勘探成功率。三维地震技术已应用到油气勘探和开发的各个阶段,特别是用于油田开发前提供详细的地下构造和地层图像,以及油田开发后的油藏评价和油藏动态监测。目前,三维地震勘探已经成为美国成熟区勘探的重要技术手段。
从地震数据处理技术来看,地震数据处理最重要的进展应属以波动方程为基础的成像和反演技术的发展和应用,其中包括叠前与叠后偏移、多次波抑制、基准面和位移静校正、速度估计。人机联作解释系统的应用进一步提高了地震资料解释的效率和精度,改进了复杂构造和地层圈闭的解释。
从美国石油地质学家协会(AAPG)1977年出版地震地层学专辑以来,将地震地质解释从构造地震学延伸到地震地层学解释领域中,推动了地震解释技术的发展。
20世纪90年代,提高油田采收率成为美国地球物理活动的重要领域。三维地震技术得到了进一步的发展和应用。高分辨率地震、井间层析成像技术成为研究与开发的重点技术(表2.3)。
表2.3 20世纪60~90年代美国地震勘探技术[36]
2.3.2.2 测井技术与美国油气勘探
美国的测井技术居于世界领先地位。测井技术对于美国发现新的油气储量,提高勘探和开发效益等都起到了相当重要的作用。测井技术从20世纪20年代开始起步至今大体可分为以下四个阶段[38]:
(1)模拟测井阶段。该阶段中由于测井手段有限,获得的地下岩石物理参数较少,因此测井资料主要用于地层对比,划分渗透层以及定性判断油水层。20世纪40年代初,石油工程学家阿尔奇根据墨西哥湾沿岸地区砂岩的实验室资料,得出了适合于纯净地层的含水饱和度公式,即著名的阿尔奇公式,标志近代测井技术开始发展形成,对岩性较为单一的储层能定量评价出孔隙度、流体饱和度、泥质含量等参数。
(2)从20世纪60年代开始,测井技术进入了第二个发展阶段,测井方法、测井系列开始配套完善,广泛采用电子技术和计算机技术,全面推广计算机控制测井技术,大大提高了测井解释精度。测井资料与其他资料结合可进行较为详细的油藏描述。利用测井资料可以评价储层的孔隙度、渗透率、含油气饱和度以及油气的可动性、烃的类型、岩性、地层倾角及构造、沉积环境、地层岩石弹性常数等。
(3)20世纪70年代以来,计算机技术、微电子技术全面融入测井数据的采集和资料的处理技术,这是测井技术的第三个阶段。多种测量仪器一次下井的组合能力、测量项目系列配套已日趋成熟,从而有助于提高钻井效率,有效地进行地层评价。
(4)从20世纪90年代开始,美国开始应用成像测井技术提高油气勘探和油气田开发效益,这成为当今现代测井技术的代表,测井技术进入第四个阶段。现代测井技术已向地质构造、沉积研究、油气层快速测试、储层压裂改造、岩石力学、产能预测、固井质量全新评价等领域全面发展,为油气勘探不断向深层、隐蔽油气藏、非均质性储层等领域拓展,以及保持储量持续增长起到了重要作用。
表2.4 20世纪50~90年代美国测井技术[36]
2.3.2.3 美国钻井技术发展历程
1859年,德雷克(E.Drake)在宾夕法尼亚州应用冲击钻钻出了美国石油工业的第一口油井。在随后的140多年里,钻井技术不断得到发展和完善,一般将20世纪的钻井技术的发展分为四个时期[39]:
(1)概念时期(1901~1919年)。将钻进与洗井结合在一起,并开始用牙轮钻头和注水泥固井技术。
(2)发展时期(1920~1948年)。牙轮钻头、固井工艺及钻井液技术进一步发展,同时出现了大功率钻井设备。
(3)科学化钻井时期(1949~1969年)。钻柱力学与井斜控制技术;喷射钻井;镶齿、滑动密封轴承钻头;低固相、无固相不分散体系钻井液及固控技术;钻井参数优选;地层压力检测、井控技术及平衡压力钻井等。
(4)自动化钻井时期(1970年至今)。PDC钻头;计算机应用;特殊工艺钻井技术;综合录井及井下随钻测量;钻井工具与装备的自动化发展等。20世纪70年代,计算机技术的引入和无线随钻测量技术的研发,是钻井技术发展的一个新的里程碑,它加快了科学化钻井的发展。20世纪80年代是深井钻井的高峰期,美国在1982年完成深井、超深井(超过4500米)1289口。到20世纪90年代,特殊工艺及高效钻井的研究与开发备受重视,大位移井、多分支井、小井眼钻井、欠平衡钻井等一系列高新技术在此阶段逐渐发展成熟。
20世纪80年代初,美国开始研究水平井技术,并取得了初步的进展。这项技术本身可追溯到1891年,当时的第一项专利技术是从一口直井里打出一个水平洞;1929年,第一口真正的水平井在美国的得克萨斯州完钻。20世纪70~80年代,随着油价的低迷、降低勘探费用的需要以及钻探设备的发展,水平钻井技术再一次被广泛研究应用。虽然钻水平井比钻直井的费用更高,但一口水平井可以起到几口直井的作用,因而钻水平井在经济上是可行的。在某些情况下,用常规井开采是不可行的,但水平井却可以使开发项目变得经济可行。20世纪90年代,水平井技术开始大规模应用,现已经作为常规钻井技术应用于几乎所有类型的油藏。到目前为止,美国是世界上钻水平井最多的国家。
目前,水平井钻井技术的应用正在向综合方向发展,大位移水平井、小井眼水平井和多分支水平井等钻井完井技术近几年在美国获得了迅速发展并大量投入实际应用(表2.5)。
美国自20世纪80年代开始运用大位移井,到90年代该技术得到了迅速发展,目前在美国主要用于加利福尼亚州近海。90年代以来,小井眼钻井技术的发展也非常迅速。目前,该技术也已应用于水平井、深井钻井中,如侧钻小井眼多分支水平井等,并开始用连续管钻小井眼。因技术领先,小井眼钻井数量最多。
表2.5 20世纪60~90年代美国主要钻井技术发展[36]
欠平衡钻井技术开始于20世纪50年代。近些年来,随着钻井新装备的不断涌现,欠平衡钻井技术再次受到高度重视,而且正逐步走向成熟。欠平衡钻井技术的主要优点是减轻地层伤害,提高单井产能、钻井效率,降低钻井成本,及时发现地质异常情况和识别产层。2003年,美国采用欠平衡方式钻井达2200多口,约占当年钻井数的20%。
什么是PVC?
一般来讲,汽车行驶大约在三五万公里时,需要清理喷油嘴,但喷油嘴的情况和车型、外界环境等因素都有关系,所以这个公里数并不是一定准确的。喷油嘴是否需要清理可以根据车的状态来灵活进行判断,如油耗忽然发生变化的时候,您应该检查节气门上是否有积碳,喷油嘴是否需要清洗。
汽车在行驶过程中突然熄火是怎么回事?
聚氯乙烯(Polyvinylchloride,PVC)
全名为Polyvinylchlorid,主要成份为聚氯乙烯,色泽鲜艳、耐腐蚀、牢固耐用,由于在制造过程中增加了增塑剂、抗老化剂等一些有毒辅助材料来增强其耐热性,韧性,延展性等,故其产品一般不存放食品和药品。它是当今世界上深受喜爱、颇为流行并且也被广泛应用的一种合成材料。它的全球使用量在各种合成材料中高居第二。据统计,仅仅1995年一年, PVC在欧洲的生产量就有五百万吨左右,而其消费量则为五百三十万吨。在德国,PVC的生产量和消费量平均为一百四十万吨。PVC正以4%的增长速度在全世界范围内得到生产和应用。近年来PVC 在东南亚的增长数度尤为显著,这要归功于东南亚各国都有进行基础设施建设的迫切需求。在可以生产三维表面膜的材料中,PVC是最适合的材料。
PVC(聚氯乙烯),其单体的结构简式为CH2=CHCl
化学和物理特性:
刚性PVC是使用最广泛的塑料材料之一。PVC其实是一种乙烯基的聚合物质,其材料是一种非结晶性材料。PVC材料在实际使用中经常加入稳定剂、润滑剂、辅助加工剂、色料、抗冲击剂及其它添加剂。具有不易燃性、高强度、耐气侯变化性以及优良的几何稳定性。 PVC对氧化剂、还原剂和强酸都有很强的抵抗力。然而它能够被浓氧化酸如浓硫酸、浓硝酸所腐蚀并且也不适用与芳香烃、氯化烃接触的场合。
PVC在加工时熔化温度是一个非常重要的工艺参数,如果此参数不当将导致材料分解的问题。 PVC的流动特性相当差,其工艺范围很窄。特别是大分子量的PVC材料更难于加工(这种材料通常要加入润滑剂改善流动特性),因此通常使用的都是小分子量的PVC材料。 PVC的收缩率相当低,一般为0.2~0.6%。
注塑模工艺条件
干燥处理:通常不需要干燥处理。
熔化温度:185~205℃ 模具温度:20~50℃
注射压力:可大到1500bar 保压压力:可大到1000bar 注射速度:为避免材料降解,一般要用相当地的注射速度。
流道和浇口:所有常规的浇口都可以使用。如果加工较小的部件,最好使用针尖型浇口或潜入式浇口;对于较厚的部件,最好使用扇形浇口。针尖型浇口或潜入式浇口的最小直径应为1mm;扇形浇口的厚度不能小于1mm。
典型用途:聚氯乙烯具有原料丰富(石油、石灰石、焦炭、食盐和天然气)、制造工艺成熟、价格低廉、用途广泛等突出特点,现已成为世界上仅次于聚乙烯树脂的第二大通用树脂,占世界合成树脂总消费量的29%。聚氯乙烯容易加工,可通过模压、层合、注塑、挤塑、压延、吹塑中空等方式进行加工。聚氯乙烯主要用于生产人造革、薄膜、电线护套等塑料软制品,供水管道,家用管道,房屋墙板,商用机器壳体,电子产品包装,医疗器械,快艇护舷,也可生产板材、门窗和阀门等塑料硬制品。
PVC可分为软PVC和硬PVC。其中硬PVC大约占市场的2/3,软PVC占1/3。软PVC一般用于地板、天花板以及皮革的表层,但由于软PVC中含有柔软剂(这也是软PVC与硬PVC的区别),容易变脆,不易保存,所以其使用范围受到了局限。硬PVC不含柔软剂,因此柔韧性好,易成型,不易脆,无毒无污染,保存时间长,因此具有很大的 开发应用价值。下文均简称PVC。软质PVC多用来做成真空吸塑薄膜,用于各类面板的表层包装,所以又被称为装饰膜、附胶膜,应用于建材、包装、医药等诸多行业。其中建材行业占的比重最大,为60%,其次是包装行业,还有其他若干小范围应用的行业。
简单地说,盐的水溶液在电流作用发生化学分解。这一过程会产生氯、苛性钠和氢气。精炼、裂化石油或汽油能产生乙烯。当氯和乙烯混合后,就会产生二氯乙烯;二氯乙烯又可以转换产生氯化乙烯基,它是聚氯乙烯的基本组成部分。聚合过程将氯化乙烯基分子连接在一起组成了聚氯乙烯链。以这种方式生成的聚氯乙烯呈白色粉末状。它是不能单独使用的,但是可以与其它成分混合生成许多产品。
氯化乙烯基最初是在1835年在Justus von Liebig实验室合成出来的。而聚氯乙烯是由Baumann在1872年合成的。但是直到20世纪20年代才在美国生产出了第一个聚氯乙烯的商业产品,在接下来的20年内欧洲才开始大规模生产。
聚氯乙烯具有阻燃(阻燃值为40以上)、耐化学药品性高(耐浓盐酸、浓度为90%的硫酸、浓度为60%的硝酸和浓度20%的氢氧化钠)、机械强度及电绝缘性良好的优点。但其耐热性较差,软化点为80℃,于130℃开始分解变色,并析出HCI。
[编辑本段]PVC的特点及成型特性
比重:1.38克/立方厘米,成型收缩率:0.6-1.5%,成型温度:160-190℃。
特点:力学性能,电性能优良,耐酸碱力极强,化学稳定性好,但软化点低. 适于制作薄板,电线电缆绝缘层,密封件等.
成型特性:
1.无定形料,吸湿小,流动性差.为了提高流动性,防止发生气泡,塑料可预先干燥.模具浇注系统宜粗短,浇口截面宜大,不得有死角.模具须冷却,表面镀铬.
2.由于其腐蚀性和流动性特点,最好采用专用设备和模具。所有产品须根据需要加入不同种类和数量的助剂。
3.极易分解,在200度温度下与钢.铜接触更易分解,分解时逸出腐蚀.刺激性气体.成型温度范围小.
4.采用螺杆式注射机喷嘴时,孔径宜大,以防死角滞料.好不带镶件,如有镶件应预热.
PVC有哪些污染?
PVC 污染成因:
PVC内一些有毒添加剂和增塑剂,可能渗出或气化;部份添加剂会干扰生物内分泌(影响生殖机能),部份可增加致癌风险;焚化PVC垃圾会产生致癌的二恶英而污染大气。
常规的PVC材料,如电线、电缆等是相当严重的污染源。在制造、使用及废弃处理时,都会产生大量的二恶英、氯氢酸、铅等有害物质;PVC材料燃烧时会发生很大的浓烟,并产生有害的HCL气体;而且大部分PVC材料中含有Pb(铅)、Cd(镉)等(用作电缆稳定剂)多种有害重金属,会对人体健康造成一定的危害;焚烧或掩埋后,会造成对土壤和水源的污染。
由于一次性医疗器械产品大多采用医用级聚氯乙烯(PVC)或聚碳酸酯(PC),而PVC加工过程中的热分解物对钢材有较强的腐蚀性,PC则硬度高,粘性大,因而对塑化部分的零部件材质要求必须是能抗腐蚀、抗磨损而且有较高的抛光性能。目前大多数医用注塑机采用机筒螺杆镀硬铬的办法或者采用不锈钢为材料制作机简螺杆以达到上述特殊要求。另外,为了防止 PVC加工过程中热分解产生气体,要求对动定模板表面进行镀铝处理,而且对外围板金也进行镀铝处理或者采用不锈钢板制作板金,板金拼缝采用无毒硅胶进行密封,以防塑料加工过程中产生的气体跑到外面(塑料加工过程中产生的气体可通过专用设备进行集中收集再经过净化处理方可排入大气中)。
PVC常用添加剂DEHP的危害: 因DEHP(邻苯二甲酸二酯)容易雾化,其他乙烯基产品包括汽车内部、淋浴胶帘或铺地板物料等,也会释放有毒气体入大气,而DEHP也易溶入油性液体中。另外,人们也开始关注到,儿童若嘴嚼这些软塑玩具,会有添加剂渗出的安全问题。一些研究表明,这添加剂也许令健康问题复杂化,但需要进一步研究。根据一些医疗研究显示,PVC增塑剂也许会导致慢:譬如硬皮病、胆管癌(cholangiocarcinoma)、angiosarcoma、脑癌与acrosteolysis 。2004年,瑞典和丹麦学者组成的的研究小组发现,常用在PVC的邻苯二甲酸酯DEHP和BBzP,和儿童过敏有相当强烈的关连性。
对未增塑聚氯乙烯(U-PVC),由于不含增塑剂,不存在DEHP渗出,但是加工过程中通常会加入稳定剂,目前大多数是铅盐稳定剂,铅是一种有毒的物质,在使用过程中会有渗出,危害人体健康,同样不可忽视.目前已经有非铅盐稳定剂,但成本高,还没有推广普及.
[编辑本段]中国PVC市场的发展
近年来,中国聚氯乙烯(PVC)发展速度惊人,新建、扩建项目纷纷上马,产能迅速扩大,产量大幅提高。1997-2006年,中国PVC产能、产量年均增长率分别高达22.2%和20.0%。
2006年全国聚氯乙烯树酯累计产量为8,238,583.86吨;2007年全国聚氯乙烯树酯累计产量达到9,716,783.63吨;2008年1-5月全国聚氯乙烯树酯累计产量为4,028,666.03吨。
2008-2012年,全球聚氯乙烯(PVC)的市场需求有望以年均4%的速度快速增长,尤其是一些发展中国家,市场需求将呈现迅猛增长的态势。中国聚氯乙烯树脂需求也将保持快速增长,特别是在建材方面,近年来正处于高速增长期。随着中国市场国际化的步伐加大,聚氯乙烯树脂包装材料和管材在水泥、化肥、粮食、食品、饮料、药品、洗涤剂、化妆品等领域都将有广阔的发展空间,其需求量相应大幅度增长;另外,汽车、通讯、交通领域对聚氯乙烯树脂的需求也呈高速增长,中国聚氯乙烯树脂工业仍有较大的发展空间。
[编辑本段]聚氯乙烯PVC期货
聚氯乙烯PVC期货聚氯乙烯(Polyvinyl Chloride,简称PVC),是我国第一、世界第二大通用型合成树脂材料,由于具有优异的难燃性、耐磨性、抗化学腐蚀性、综合机械性、制品透明性、电绝缘性及比较容易加工等特点,目前,PVC已经成为应用领域最为广泛的塑料品种之一,在工业、建筑、农业、日常生活、包装、电力、公用事业等领域均有广泛应用,与聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)和ABS统称为五大通用树脂。
一、聚氯乙烯简介
聚氯乙烯是一种无毒、无臭的白色粉末。它的化学稳定性很高,具有良好的可塑性。除少数有机溶剂外,常温下可耐任何浓度的盐酸、90%以下的硫酸、50~60%的硝酸及20%以下的烧碱,对于盐类亦相当稳定;PVC的热稳定性和耐光性较差,在140℃以上即可开始分解并放出氯化氢(HCl)气体,致使PVC变色。PVC的电绝缘性优良,一般不会燃烧,在火焰上能燃烧并放出HCl,但离开火焰即自熄,是一种“自熄性”、“难燃性”物质。基于上述特点,PVC主要用于生产型材、异型材、管材管件、板材、片材、电缆护套、硬质或软质管、输血器材和薄膜等领域。
二、聚氯乙烯的分类
根据应用范围不同,PVC可分为:通用型PVC树脂、高聚合度PVC树脂、交联PVC树脂。通用型PVC树脂是由氯乙烯单体在引发剂的作用下聚合形成的;高聚合度PVC树脂是指在氯乙烯单体聚合体系中加入链增长剂聚合而成的树脂;交联PVC树脂是在氯乙烯单体聚合体系中加入含有双烯和多烯的交联剂聚合而成的树脂。通用型聚氯乙烯由于制备方法简单、用途广泛,在现货市场上流通的绝大部分都是通用型的聚氯乙烯树脂,而高聚合度的和交联的PVC树脂一般在特殊领域应用较多。
根据氯乙烯单体的获得方法来区分,可分为电石法、乙烯法和进口(EDC、VCM)单体法(习惯上把乙烯法和进口单体法统称为乙烯法)。目前,世界上多为乙烯法PVC,而我国则主要以电石法PVC为主。
根据氯乙烯单体的聚合方法,聚氯乙烯的获得又有悬浮法、乳液法、本体法和溶液法之分。悬浮法以其生产过程简单,便于控制及大规模生产,产品适宜性强,是PVC的主要生产方式,从世界范围内讲,悬浮法PVC的生产量约占总量的80%。本体法不用水和分散剂,聚合后处理简单,产品纯度高,但是存在聚合过程搅拌和传热的难题,生产成本较高,属于淘汰类工艺,其生产能力不到总量的10%,我国目前只有四川宜宾天原采用本体法生产PVC。乳液法聚合时以水为分散介质,制得的颗粒较细,热稳定性和电绝缘性不佳,适宜糊树脂的生产,主要用于制造人造革、浸渍手套、纱窗、水田靴、工具把手、壁纸、地板卷材、蓄电池隔板和玩具等,我国PVC糊树脂的产量不到PVC总产量的4%。溶液聚合只用来生产涂料或特种产品。在美国,使用各种聚合方法生产的树脂比例是:悬浮法87.8%、乳液和微悬浮法6.4%、本体聚合法4.4%、溶液法1.4%。在我国,90%以上的PVC都是采用悬浮法制备生产的。
三、聚氯乙烯的生产工艺及成本分析
1.生产工艺
PVC的生产主要有两种制备工艺,一是电石法,主要生产原料是电石、煤炭和原盐;二是乙烯法,主要原料是石油。国际市场上PVC的生产主要以乙烯法为主,而国内受富煤、贫油、少气的资源禀赋限制,则主要以电石法为主,截至到2007年12月,电石法约占我国PVC总产能的70%以上。
值得注意的是,在电石法制备PVC中,原盐电解后氯化氢用于生产PVC,剩余的钠部分用于生产烧碱,所以,氯、碱实际上存在共生关系,氯碱平衡也是整个行业发展过程中不得不考虑的重要因素。
2.成本分析
从生产成本角度分析,两种工艺在不同经济发展周期,成本差别较大。通常情况下,在国际宏观经济高速发展阶段,由于油价较高,乙烯法生产成本较高,电石法成本优势明显;而一旦国际经济进入衰退,油价将在低位运行,电石法由于能耗较高,煤电油运等价格有支撑,成本优势消失。自2003年以来,国际油价大幅攀升,使乙烯法PVC成本增加,而电石法生产则受此影响较小,从而导致国内电石法PVC生产装置建设的新一轮热潮,使电石法PVC产能急剧扩大,对乙烯法PVC生产形成了极大挑战,许多乙烯法企业处于亏损边缘。但随着2008年5月之后原油价格的持续下调,乙烯法的成本优势明显,电石法生产厂家微利运行,甚或难以为继。
电石法成本构成主要由电石费用、氯化氢费用和水电费构成。国家标准规定:生产1吨PVC消耗电石1.45~1.5吨,(一般以1.45计算,但一般实际生产过程中消耗会高于这个比例,只有少数能达到标准),消耗氯化氢气体0.75~0.85吨(一般以0.76计),每吨耗电量约450~500kw?h,另有其它项目开支,如包装费、引发剂、分散剂、水费、管理人员费用等因生产厂家和生产规模的不同而不尽相同。总体来讲,电石法的成本构成分配比例约为:电石占65~70%,氯化氢占15%,电力占6%,其他制造费用占6%。电石法的一个显著特点为耗电较高,不但在生产PVC时要耗费电力,由焦炭制备电石也要消耗大量的电,如生产1吨电石约需消耗3450 kw?h的电、0.6吨的焦炭和0.9吨的石灰石。
乙烯法成本的主要因素有乙烯消耗量、氯气消耗、耗电量、加工助剂、管理人工费用等。乙烯法每生产1吨PVC要消耗乙烯0.5吨,消耗氯气0.65吨,两者约占成本的60%左右。在原料成本中乙烯成本占了主要部分,乙烯价格对聚氯乙烯的成本有较大影响。虽然乙烯法耗能量较电石法低,但其设备投资却十分巨大,因此设备折旧在成本中所占比重较大。而设备投资是固定的,因此乙烯、氯乙烯价格的变化是聚氯乙烯树脂价格变动的主要因素。
四、聚氯乙烯的主要用途及产业链
1.聚氯乙烯异型材
型材、异型材是我国PVC消费量最大的领域,约占PVC总消费量的25%左右,主要用于制作门窗和节能材料,目前其应用量在全国范围内仍有较大幅度增长。在发达国家,塑料门窗的市场占有率也是高居首位,如德国为50%,法国为56%,美国为45%。
2.聚氯乙烯管材
在众多的聚氯乙烯制品中,聚氯乙烯管道是其第二大消费领域,约占其消费量的20%左右。在我国,聚氯乙烯管较PE管和PP管开发早,品种多,性能优良,使用范围广,在市场上占有重要位置。
3.聚氯乙烯膜
PVC膜领域对PVC的消费位居第三,约占10%左右。PVC与添加剂混合、塑化后,利用三辊或四辊压延机制成规定厚度的透明或着色薄膜,用这种方法加工薄膜,成为压延薄膜。也可以通过剪裁,热合加工包装袋、雨衣、桌布、窗帘、充气玩具等。宽幅的透明薄膜可以供温室、塑料大棚及地膜之用。经双向拉伸的薄膜,所受热收缩的特性,可用于收缩包装。
4.PVC硬材和板材
PVC中加入稳定剂、润滑剂和填料,经混炼后,用挤出机可挤出各种口径的硬管、异型管、波纹管,用作下水管、饮水管、电线套管或楼梯扶手。将压延好的薄片重叠热压,可制成各种厚度的硬质板材。板材可以切割成所需的形状,然后利用PVC焊条用热空气焊接成各种耐化学腐蚀的贮槽、风道及容器等。
5.PVC一般软质品
利用挤出机可以挤成软管、电缆、电线等;利用注射成型机配合各种模具,可制成塑料凉鞋、鞋底、拖鞋、玩具、汽车配件等。
6.聚氯乙烯包装材料
聚氯乙烯制品用于包装主要为各种容器、薄膜及硬片。PVC容器主要生产矿泉水、饮料、化妆品瓶,也有用于精制油的包装。PVC膜可用于与其它聚合物一起共挤出生产成本低的层压制品,以及具有良好阻隔性的透明制品。聚氯乙烯膜也可用于拉伸或热收缩包装,用于包装床垫、布匹、玩具和工业商品。
7.聚氯乙烯护墙板和地板
聚氯乙烯护墙板主要用于取代铝制护墙板。聚氯乙烯地板砖中除一部分聚氯乙烯树脂外,其余组分是回收料、粘合剂、填料及其它组分,主要应用在机场候机楼地面和其它场所的坚硬地面。
8.聚氯乙烯日用消费品
行李包是聚氯乙烯加工制作而成的传统产品,聚氯乙烯被用来制作各种仿皮革,用于行李包,运动制品,如篮球、足球和橄榄球等。还可用于制作制服和专用保护设备的皮带。服装用聚氯乙烯织物一般是吸附性织物(不需涂布),如雨披、婴儿裤、仿皮夹克和各种雨靴。聚氯乙烯用于许多体育品,如玩具、唱片和体育运动用品,目前聚氯乙烯玩具增长幅度大,由于聚氯乙烯玩具和体育用品生产成本低,易于成型而占有优势。
聚氯乙烯(PVC)期货合约
交易品种
聚氯乙烯
交易单位
5吨/手
报价单位
元(人民币)/吨
最小变动价位
5元/吨
涨跌停板幅度
上一交易日结算价的4%
合约月份
1,2,3,4,5,6,7,8,9,10,11,12月
交易时间
每周一至周五上午9:00~11:30,下午13:30~15:00
最后交易日
合约月份第10个交易日
最后交割日
最后交易日后第2个交易日
交割等级
质量标准符合《悬浮法通用型聚氯乙烯树脂(GB/T 5761-2006)》规定的SG5型一等品和优等品
交割地点
大连商品交易所指定交割仓库
最低交易保证金
合约价值的5%
交易手续费
不超过6元/手
交割方式
实物交割
交易代码
V
上市交易所
大连商品交易所
聚氯乙烯交割标准
聚氯乙烯标准品为质量标准符合国家标准《悬浮法通用型聚氯乙烯树脂(GB/T 5761-2006)》的SG5型一等品。优等品作为替代品允许交割,优等品和一等品之间不设等级升贴水。
交易所推荐厂家推荐品牌的聚氯乙烯,货主能够提供《大连商品交易所黄大豆1号、黄大豆2号、玉米、线型低密度聚乙烯、聚氯乙烯标准仓单管理办法》规定材料,经交割仓库审核同意后,可免于质量检验。推荐厂家推荐牌号的企业资格与名录由交易所确定并公布。
聚氯乙烯指定交割仓库分为基准交割仓库和非基准交割仓库,分别设在广东省、上海市、浙江省、江苏省等地,交易所可视情况对指定交割仓库进行调整。指定交割仓库名录和升贴水由交易所确定并公布。
聚氯乙烯交割品要求使用原生产厂家或者其认可的包装,包装袋上应标明商标、产品名称、产品标准号、净质量、生产厂名称及地址,并标识产品型号。
包装材料为内衬塑料薄膜袋的牛皮纸袋、聚丙烯编制袋或牛皮纸与聚丙烯编制物复合袋,应保证产品在正常贮运中包装不破损,产品不被污染,不泄漏。每袋净重25±0.2kg,每吨40袋,无溢短。
聚氯乙烯包装物价格包含在聚氯乙烯合约价格中。
四、聚氯乙烯的主要用途及产业链
1.聚氯乙烯异型材
型材、异型材是我国PVC消费量最大的领域,约占PVC总消费量的25%左右,主要用于制作门窗和节能材料,目前其应用量在全国范围内仍有较大幅度增长。在发达国家,塑料门窗的市场占有率也是高居首位,如德国为50%,法国为56%,美国为45%。
2.聚氯乙烯管材
在众多的聚氯乙烯制品中,聚氯乙烯管道是其第二大消费领域,约占其消费量的20%。在我国,聚氯乙烯管较PE管和PP管开发早,品种多,性能优良,使用范围广,在市场上占有重要位置。
3.聚氯乙烯膜
PVC膜领域对PVC的消费位居第三,约占10%左右。PVC与添加剂混合、塑化后,利用三辊或四辊压延机制成规定厚度的透明或着色薄膜,用这种方法加工薄膜,成为压延薄膜。也可以通过剪裁,热合加工包装袋、雨衣、桌布、窗帘、充气玩具等。宽幅的透明薄膜可以供温室、塑料大棚及地膜之用。经双向拉伸的薄膜,所受热收缩的特性,可用于收缩包装。
4.PVC硬材和板材
PVC中加入稳定剂、润滑剂和填料,经混炼后,用挤出机可挤出各种口径的硬管、异型管、波纹管,用作下水管、饮水管、电线套管或楼梯扶手。将压延好的薄片重叠热压,可制成各种厚度的硬质板材。板材可以切割成所需的形状,然后利用PVC焊条用热空气焊接成各种耐化学腐蚀的贮槽、风道及容器等。
5.PVC一般软质品
利用挤出机可以挤成软管、电缆、电线等;利用注射成型机配合各种模具,可制成塑料凉鞋、鞋底、拖鞋、玩具、汽车配件等。
6.聚氯乙烯包装材料
聚氯乙烯制品用于包装主要为各种容器、薄膜及硬片。PVC容器主要生产矿泉水、饮料、化妆品瓶,也有用于精制油的包装。PVC膜可用于与其它聚合物一起共挤出生产成本低的层压制品,以及具有良好阻隔性的透明制品。聚氯乙烯膜也可用于拉伸或热收缩包装,用于包装床垫、布匹、玩具和工业商品。
7.聚氯乙烯护墙板和地板
聚氯乙烯护墙板主要用于取代铝制护墙板。聚氯乙烯地板砖中除一部分聚氯乙烯树脂外,其余组分是回收料、粘合剂、填料及其它组分,主要应用在机场候机楼地面和其它场所的坚硬地面。
8.聚氯乙烯日用消费品
行李包是聚氯乙烯加工制作而成的传统产品,聚氯乙烯被用来制作各种仿皮革,用于行李包,运动制品,如篮球、足球和橄榄球等。还可用于制作制服和专用保护设备的皮带。服装用聚氯乙烯织物一般是吸附性织物(不需涂布),如雨披、婴儿裤、仿皮夹克和各种雨靴。聚氯乙烯用于许多体育品,如玩具、唱片和体育运动用品,目前聚氯乙烯玩具增长幅度大,由于聚氯乙烯玩具和体育用品生产成本低,易于成型而占有优势。
PVC的产业链层次
够详细了吧,。,。。。。。。
什么是可燃燃料?
轿车在行驶中突然熄火一般有以下5个原因:
1、电路故障。这种可能就是在行驶过程中由于低压断电,熄火。这个时候可以主要检查一下点火和起动机的开关还有保险盒。
2、低压线路短路造成熄火,这种情况下是断断续续的熄火。检查一下你的低压线路
3、器件故障。这个问题一般是点火线圈,容电器,电子点火模块。就是一开始能起动,过一会就熄火,然后又能起动,又会熄火。
4、油路故障。汽油泵损坏,油管破裂,汽化器进油口堵塞,油箱没油。但是这种情况下汽车是可以再起动的,只是很难。
5、点火系统,发动机过热放爆系统有问题都会熄火
如果把汽车天然气一套拆掉,改回烧油,发动机上打的孔怎么办?自己能拆除天然气这一套吗?
20世纪,任何人的有生之年,煤都是一种不会枯竭的资源。20世纪最后10年中,煤的资源基础可以满足未来400年的需要,以每年消耗增长为26%计,1980年世界能源委员会公布的估算探明储量可持续近80年(注5)。如果优先考虑能源供应充足与否,就不能忽视煤这种资源;如果优先考虑环保,则对煤的开发一定要谨慎。后者与本章内容关系尤为密切,因为将一种资源转换成储量离不开成本和技术,而使用原始能源却造成环境污染,这样的决策势必会阻碍煤储量的扩大。
成煤
有一点值得注意,就是我们可以不间断地追踪煤的整个演化过程。煤的形成需要诸多条件,但一般都由沼泽底部腐烂的植物残骸形成,树木及其他沼泽植物死亡后,落入其周围的水中,尽管一些动物如白蚁会吞噬死亡植物,死亡植物在空气中还会氧化,但由于水的掩埋,这些过程变缓,因此二者均不能将全部死亡植物消耗殆尽。经过数千年,大量的死亡植物不断积累,下面的物质被上覆的物质压实,这些积累物被称为泥炭沼,可见,泥煤是最近消亡物质形成的一种植物燃料,当泥炭沼经地质运动被埋在岩石沉积以下时,成煤过程就开始了。
沼泽演变过程中,海平面上升淹没了沼泽,海平面下降则使沼泽干枯,地质学家将海平面的上升和下降分别称为“海进”和“海退”。沼泽区更像一片滞水区,时而淹没,时而干枯,植被也随之经受这一周期性的缓慢过程。古生态学家通过观察某一地区的煤层分布,就能研究这种由陆地和水引导而使植被跟进的演化规律及其结果。
煤的形成和进化过程中有压实阶段,即将流体挤出,挤出的大部分流体是水,因此压实过程中,一定体积或质量情况下,剩下的富含碳的固体物质越来越多。碳化合物是煤的化学能的来源,因此可以说,压实作用提高了一定体积的煤所含有的能量。
等级与质量
年代早、压实程度高的煤,其化学能的密度(即单位质量所含的能量)通常高于年代晚的煤。能量密度高、成熟度高的煤,在能量一定的情况下,需采出的煤量少,因此更易于运输。煤的成熟度就是其等级,附录中给出了不同等级的煤及其特点。褐煤的成煤时间最短,通常是海退之后埋藏在沉积物之下的泥煤;接下来是沥青煤,沥青煤这一大类中又有许多不同的分级,反映出随着埋藏深度加深,埋藏时间加长,其湿度和挥发性物质(如甲烷)含量越来越低;无烟煤成煤时间最早,与其原始植物状态相比变化程度也最大,基本没有湿度,也不含挥发性物质。煤的级别越高,所含能量也越高,硬度也越强,因此对煤最简单的分类莫过于将其分为“硬煤”(hard coal)和软煤(soft coal),硬煤的能量含量为10260英热单位/磅以上,软煤的热值则低。煤在压实过程中,流体被挤出,一些挥发性物质,通常是甲烷也随之流失,影响了煤的能量含量。煤的等级高,灰的含量也随之增加,有些人最初看到这一现象时很吃惊,其实,压实过程中挤出的大部分物质是水,灰的含量(无论是按体积还是按重量比)随碳含量的增高而增加。如果这样,是不是等级高的煤燃烧起来烟更大呢?并非如此。这个问题要把能量含量和灰含量联系起来看,等级可以通过化验来确定,有意思的是,等级试验结果表明,煤的等级并不直接与其热值或埋藏深度有关,更多的却与其亮度有关。地质学家和地球化学家们给该试验取了一个极为响亮的名称:镜质体反射(vitrinite reflectance)。它只是意味着镜质体组分(大部分是碳)有闪光性,随年头增多,等级升高,闪光性也更强。岩石收藏者应该能注意到无烟煤就像黑曜岩一样色泽光亮,而沥青煤则是暗黑色,褐煤之所以叫褐煤,就是因为其外表毫无光泽,而泥煤就和从堆肥底部捞上来的东西差不多。
还有许多试验,包括测定煤的凝结特性和自由膨胀指数,与煤在或慢或快的氧化过程中的表现有关。这些参数可以说明哪种煤最适合的用途。
通过液化或气化,煤可以转换成液态燃料——合成燃料。这种潜力是偶然发现的。合成燃料克服了煤不方便的缺点,某种程度上也克服了其环保方面的障碍,比如像硫化合物这样的污染物在合成过程中可以脱除掉。但合成过程要消耗能量,因此存在效率方面的代价,这使得煤产品的成本过高,目前,煤的合成燃料仍无法与油气产品竞争。
表1.1给出了世界各地已知煤资源量的探明储量和热当量值。应该注意的是,表中某些地区资源量很小,但这些地区的勘探程度也低,例如,美国地质普查局目前正在撒哈拉以南的中部非洲地区普查,预计那里可能有大量的、但迄今为止仍是未知的低等级煤资源。
表1.1 不同地区硬煤的探明储量资料来源:Hedley, Don 1986, World Energy: The Facts and The Future, Euroraonitor Publicatitms,London, p. 186.
如果将这些数字同全世界约为300夸特的年耗能量相比,储量无疑是巨大的。大部分探明储量都集中在发达国家中,撒哈拉以南的中部非洲地区探明总储量的三分之一在南非并由南非控制,这一事实也说明了这一点。是否有煤资源的地区才能实现工业化,还是只有工业化国家才能找到煤储量?
油和气
全球石油的预测资源量基础为2.2万亿桶(580万英热单位/桶),相当于12700夸特。其中有6100亿桶为可采储量(注6),20世纪60年代M.金.哈伯特(M. King Hubbard)在其著作中指出,未发现的资源量有可能使储量又增加6000亿桶,基本上是把目前专家们预测的控制储量又翻了一番(注7)。
油气生成
一般认为油气和煤一样,也是由大量的死亡动植物的残骸形成,这些物质的埋藏条件使其免于其他生物的消耗或氧化。虽然有冒犯广告部门之嫌,但科学理论确实认为恐龙遗体在石油沉积中不占主要部分,某些恐龙的体型尽管庞大,但即使一个中等大小的油藏也需要几百万这样的大家伙死在同一个地方。油气沉积更有可能由众多的小水族生物构成,这些生物以溢人海中(有时是湖泊)的丰富营养物质为生。因此,许多油藏都位于古三角洲地区,因为河流可以将大量营养物质和残渣从这里带人海洋。
物换星移,岩石沉积物(泥、粉砂和砂)逐渐离开河流开始堆积,形成巨大的砂层、粉砂层、泥层或者化学沉积物层,如碳酸钙。就像成煤一样,越来越多的岩石物质在富含腐烂有机质的层位上方沉积。正常情况下,随着岩石的沉积,岩石空隙中的流体形成连续相,这样,任意深度的流体都可以支撑上覆流体的重量(流体静压头),同理岩石颗粒也保持连续接触,支撑上覆岩石颗粒的重量。这种情况是沉积和压实过程的结果,这一过程中,增加的沉积物会将下方受压实的沉积物中的流体挤出。但是随着埋藏深度的增加,更有可能出现的情况是:非渗透层中断了排出流体的连续状态,此时,被圈闭的流体必须承载一部分岩石负荷,这就使得压力快速升高,这种情况称为“过压”(overpressure),在深度为10000英尺以下时非常典型。
油气藏存在的条件有三个:孔隙渗透性岩石、圈闭和生油岩。孔隙渗透性岩石构成油气藏本身,油气储存在岩石颗粒之间及岩层(如砂岩或灰岩)晶体之间的大量微小孔隙中。埋藏过程中不断增加的岩石负荷迫使流体从正在压实的页岩物质中排出,油和气经过孔隙和渗透性油气藏中的水上移,占据了储集岩颗粒或晶体之间的微小孔隙,而一部分水总是留在岩石沉积中。岩石颗粒外围一般有一层水,油和气占据中间的孔隙,较轻的油气上移,至表面后会向大气中溢出,除非遇到圈闭,即非渗透层。图1.1所示为显微镜下观察到的油藏孔隙形态。
图1.1 油藏孔隙注:浅色区域代表砂粒,浅色阴影部分为外围的水,深色阴影部分代表孔隙空间中央的油或气。此图所示储集岩物性很好。由劳埃德·布朗(Loyd Brown)先生提供
几乎所有的油藏都含有一定量的气。有些气可以溶解在油中,就像饮料中的碳酸一样,但如果气量超过能溶解的量,则会形成游离气顶,由于气很轻,且移动性强,少量的气会通过微裂缝或孔隙路径逸散到地表面,这部分气主要是甲烷。
流体烃基本上在水相(海洋、河流、湖泊)沉积环境中生成。最初水填满了所有储集岩的孔隙,即使有大量的油气运移到储集岩中来,也无法驱替全部的原生水。如果大量的油气没有运移到储集岩中来,其中余下的水就更多,孔隙中水越多,油藏性能就越差。
石油市场
19世纪中叶,石油开始时常引起人们的注意(在宾夕法尼亚的油溪发现有油渗到地表)。石油虽然可以燃烧,但在地表所发现的量还不足以构成商业规模,且燃烧时有刺鼻的浓烟。有些开拓型的企业家从溪水中将油捞出、装瓶,作为稀有的药品出售。大约在1850年,塞缪尔·基尔(Samuel Kier)投产了第一个石油蒸馏器,处理盐井中产出的油,蒸馏产品成为极好的照明用油,于是需求量瞬间大增,接下来的几年中,其价格从每加仑75美分剧增到2美元(注8)。
1859年,埃德温·德瑞克(Edwin Drake)雇了一名盐井钻工在宾夕法尼亚州泰特斯维尔城(Titusville)附近打了一口井,在62至67英尺深的地方钻遇了一道裂缝,每天能涌出10桶左右的油,这和以前的只从地表裂缝或小溪水面上捞油的产量相比,无疑是极高的产量。新的丰富的石油资源很快证明了其作为燃料的巨大潜力,引发了第一轮钻井热潮。19世纪与20世纪之交,宾夕法尼亚西部和弗吉尼亚西北部已打了几百口井。打井狂潮使得油价直线下跌,需求量上涨虽也很快,但还是落后于产量的增长。当时的产量波动幅度很大,产量上来后,新发现使价格下跌,持续的需求增长又会使价格上扬。
与固体燃料相比,液体燃料有明显的优势。液体可以从储集点流到使用点,就像煤油沿着灯芯上移或汽油流入引擎一样,燃料点一直能保证有少量燃料,这样燃烧会更均匀,也便于控制。还可以用简单的蒸馏工艺对流体燃料进行处理,以满足不同的燃烧标准,包括清洁燃烧标准。这些优点使得石油越来越受消费者青睐,其市场占有率很快就超过了煤。
石油工业的早期虽然“粗放”(crude),但增长速度很快。石油地质学家们很快就摒弃了下面这种观念:石油在地下河中流淌。随之而来的是钻井技术和开采技术的改进。到了20世纪初,墨西哥湾的浅水区及世界上其他不同地区都有石油生产。
石油这种能源,一经发现,就会在地层本身的压力作用下,乖乖地流到消费者手中,这是前所未有的事。对这种能源的获取,绝大部分投资是在钻井方面,井完钻后,后续的生产既不需要大量的劳动力,其他方面的成本也不是很高。成本没有多少,生产的量却很大,这使得石油成为财富的源泉,因此得名“黑金”。尽管如此,其单位体积或单位重量的价值并没有高得离谱,即使在价格暴涨的20世纪70年代,石油(或其炼制产品汽油)价格也没超过任何一种液态产品(如牛奶)的价格。但当时一口单井的初始产量能达到每天20000桶,甚至30000桶,即便以20世纪80年代的低谷油价计算,这样的一口井每天的收益也能达到近25万美元,这种井的盈利性毋庸置疑。当然,这种高产油田极其少见,当时探井的成功率只有5%(依据所掌握的地质资料)。如果和牛奶相比,没有哪头牛一天能产30000桶奶,所以农场主不必白费力气去买19头牛,再找出一头这样的高产奶牛,他也不可能花费120万美元去买一头不产奶的牛。
液态燃料比其他任何一种燃料都更方便,能量密度也高。这种燃料促进了自带功率“马车”的研发,汽车业迅速发展,美国的成年人很快人手一辆。20世纪初美国本土不断有新发现的油田,与此同时,美国和欧洲公司在全球范围内都有石油产量,其中包括来自沙特阿拉伯盖瓦尔(Ghawar)超大油田的产量。
丰富的石油资源极大地促进了美国经济的增长,需求的增长又促进了石油工业的发展。石油利润主要来自销售,国际化生产满足了大部分市场需求,然而各出口国政府却已经认识到本国财富的巨大来源正在由外国公司生产,生产成果由外国人享用,继此之后,石油生产开始国有化。某些地方的国有化进程比较温和,比如沙特阿拉伯分享ARAMCO公司(the Arabian American Co.——阿拉伯美国公司)的股权,重组后的公司中,原来的产油公司仍保有营业权益;但另外一些地方的国有化就不是这么风平浪静,比如利比亚将英国石油公司的权益国有化,还有伊拉克和伊朗的国有化进程(注9)。1960年,委内瑞拉、沙特阿拉伯、科威特、伊朗、伊拉克和印度尼西亚成立了石油输出国组织,但直到1973年,该组织才有足够的力量在油价方面与西方的油公司抗衡,各成员国甚至走到一起进行磋商,同时,阿拉伯国家还将这一新生力量作为政治武器使用。此时,美国的石油供应有36%依靠进口,石油禁运给美国以重创。
美国人由此经历了长期的石油短缺和汽油价格上涨。OPEC成员国深刻认识到如果保持低产量、高价格,那么长此以往,他们的油会有更高的价值。我们可以再拿与农业的对比来说明:农场主无法选择将生产推迟,今天没收割的庄稼,过了农时就会颗粒无收;但OPEC在1973年没有油产量,可以留到将来再生产。有些人谴责这种市场操控“违规”,还有些人指责美国人的买方垄断“犯规”(买方垄断与卖方垄断相反,是指一个消费者,或一群消费者采取一致行动,通过控制市场的大部分需求控制价格)。这中间,到底谁是罪魁祸首,每个人对民族主义、市场自由和公正的看法不同,得出的结论也不同,这是些无法简单回答的问题但关键是要明白,正是上述这种“违规”和“犯规”导致了供应短缺。
油价上涨让美国人受到了打击。一度廉价丰富的能源供应急剧缩减、价格飞涨,从1973年到1983年,美国人节约用油近20%,总耗能量降低11%(实际上,耗能从1979年的高峰降至1983年的低谷,这种情况反过来又要求增加能源的使用)(注10),同一时间内,美国国内掀起了滞后多年的石油生产的热潮。较浅的大油田几十年前就已发现,产量早已递减,外国原油的进口,使得人们没有积极性去打更深的井、找新油田、或者针对老油田采用昂贵的新技术提高采收率(需要注意的是,油井达到其产量极限,其费用并不按比例增长,这种所谓的生产极限在国际上来说仍是很高的产量,而多数美国人的井已经按极限产量生产了多年)。美国国内的石油短缺表现在两个方面:国内的产量和储量基础在下降;需求的增长靠增加的进口原油解决。美国的石油工程师和化学家们清楚地知道,产量递减的油田,地下仍留有原始地质储量的三分之二或四分之三(其中的技术原因将在下一章探讨),储量是指在现有技术和经济条件下,已知资源量中可以生产出来的那部分。因此,石油工作者们对提高采收率技术进行了刻苦攻关,用技术将美国的储量翻了一番,使老油田的产量提高了一大块。
第一次石油危机,继而第一次能源危机并非出现在20世纪70年代,能源危机导致一种能源向另一种能源过渡,甚至影响到了国家的兴衰,美国和欧洲的石油短缺在两次世界大战中都引起了能源危机。1943年,美国的内务部长(同时也是石油巨头)哈罗德·伊克斯(Harold Ickes),出版了一篇题为《我们正在耗尽石油》的文章,1948年,美国提出“能源危机”。1956年的苏伊士危机曾使能源的市场供应一度严重中断,当时的石油禁运是针对英国和法国,而不是美国。1967年的六日战争之后,阿拉伯的原油生产国采取了禁运措施,1973年的禁运更为成功,影响范围也更大,两次禁运使得油价急剧上涨(注11)。
油价上涨后,西方的财团突然急于增加在第三世界原油生产国的投资。传统的发展理论主旨是:发展需要注人大量资本[欠发达国家缺少能吸收资本的基础设施,这种现象说明传统理论存在着致命缺陷。艾哈迈德·阿布·贝克尔(Ahmad Abubakar)解释了其中原因](注12),许多贫穷的产油国获得了巨额贷款,其石油财富却被均分。
全球范围内的勘探日趋白热化,新技术不断使储量增加,需求已趋于饱和,石油供应与需求量已基本持平。但压力之下,背负巨额贷款的产油国仍要保持较高的产量水平,生产能力不断提高的同时,世界市场的原油价格却一直在下滑。太多的产油国为了保持其在国际上的资金信誉而放弃了原油限产,OPEC试图给每个成员国设定一个产量限额,但此时又出现了几个非OPEC成员的原油出口国,更有甚者,还有几个负债严重的成员国为了完成其偿还贷款的任务而谎报产量。
市场压力各方面的因素综合到一起,使得几年内油价直线下跌,最低时还不到最高油价的三分之一。在美国,购买进口原油又开始比自己生产边缘井来得便宜,到1990年,美国的原油进口占其原油总量的一半以上,比1973年石油禁运前的进口量还大,如果不依靠进口,就会出现原油短缺,且短缺会持续,但如果选择纯粹的自由市场机制(包括国外市场),则不会出现全球的供应短缺。
美国人对能源供应的看法一直自相矛盾。一方面美国人认为不应该对市场进行任何限制,应该购买最便宜的石油;另一方面,供应中断,国内出现短缺时,美国人又要政客们出面让各油公司稳定油价。美国人要保证充足的供应,以便可以随时开车到任何想去的地方;美国人要强迫其他原油出口国从他们的油田里为“我们美国人”提供原油。1990年,美国制裁伊拉克以及受伊拉克控制的科威特前后,一度需求受到遏制,当时政治家们和消费者都大声疾呼,反对石油产品价格上涨,那时有一部分供应还是以前低油价时采出的油。这种情形实在是一种绝妙的讽刺:80年代油价下跌时,当时的生产井都是70年代后期高油价时投产的,其投资成本高,却没有保持油价上扬的机制。买方市场时,将价格降低寄希望于高成本油井的产量,卖方市场出现时,也要求油价不要上涨,这有道理吗?
反对油价上涨这种情绪在地球环保年期间达到了高潮,而当时美国人和世界上许多国家因惧怕全球范围的温度回升、酸雨等等,开始致力于环保。报纸杂志等大肆指责化石燃料带来的环境危机,可是一旦要通过涨价限制能源使用时,涨价又不被接受。
环保主义者们本身也是十足的石油消费者,其态度的多变并不是说环保运动不重要,说明这种现象也不是要给石油工业唱赞歌,只不过需要注意的是:各公司的经营可能会反映出其领导者的一些人格特征,但公司毕竟不是人,能源公司同其他公司一样,也要对市场作出回应,努力使其利润最大化。因此说这些公司目光短浅、对环保重视不够或没能保护好边缘市场(承受能力弱的消费者),这些指责很有分量,但必须由所有的人承担,如果指责这些公司蓄意冒犯或心存恶意则毫无意义。
未来生产潜力
控制公司行为的市场力量具有双重性:一方面,消费者购买产品;另一方面消费者购买公司股份从而拥有该公司。后者,是个人为公司做出战略规划,而前者则是为公司的生产做计划。只要消费者还需要大量的能源,这种需要就为提高产量提供了驱动力,这种需要一直与经济状况密切相关,只要股东们确立了投资回报的优先顺序,短期内的价格也就随之确定。
说了这么多,只是想说明应该把油气视为一种有限的但不会最终枯竭的资源。本书写作期间,供应还在随需求而变化,这种情况会一直延续至21世纪。以目前的消耗水平计,世界上现有储量可以维持到21世纪30年代,但还有许多没发现的储量,地质学家和工程师们深信这一点,否则,就不会再有勘探钻井。由于供应低于需求,在已知资源量范围内,通过对老的递减井采用提高采收率技术进行生产,可以大幅增加储量。
全球还有很大一部分地区未进行勘探。只要对比一下,美国有60万口生产井,而非洲大陆只有6000口,而非洲大陆的沉积盆地要比美国多;再进一步说,即使在已完全开发的油田,油的可采储量也从没超过油藏中已知资源总量的三分之一。还有大量的油等着我们去发现,如果有必要,还有更多的油可以从老油田中生产出来(见表1.2)。因此可以说,此书写作时在世的人,很难活着看到油气储量枯竭的那一天。
表1.2 世界不同地区的油气储量 夸特资料来源:Derived from data in the Oil Gas Journal, Dec. 25, 1989, pp. 44-45. 非常规油气资源
许多作者将沥青砂、致密含气砂岩和地压含水层(含气)看成是单独的资源,本书中将其划归为一大类,只是代表了常规油气的极端情况。沥青砂也是油藏,不同的是,它不含较轻的烃分子,因此油无法流动,地质年代中,这种油藏一度可能是常规的油藏,但由于侵蚀作用,逐渐暴露于地表,经过不知多少世代,几乎所有的较轻分子蒸发殆尽。加拿大的沥青砂非常闻名,尤其以阿萨巴斯卡广阔无垠的沥青砂著名。
致密含气砂岩是页岩含量很高的气藏,基本上没有渗透性,因此流体很难通过。气体由于分子极小,几乎没什么粘度,因此从这种气藏中获得一定产量是可能的,下一章要讨论的油气藏增产技术可以用于这种气藏。本书给出的资源量和储量数字包括了这里所说的非常规资源量,但对致密含气砂岩的资源量很可能估计不足,因为常规勘探中,常常忽略致密含气砂岩所处的页岩油藏。
地压含水层是100%水饱和的砂岩地层,但水中有溶解气,就像饮料中的碳酸饱和一样。从技术角度讲,所有地层都在地压作用之下,即每一地层都要承受其上覆地层的压力,地压含水层的特殊之处在于,极高的地压之下,水中含有大量的溶解气。如果价格有保证的话,有可能会开发这些含水地层以获得其中的气。
干酪根
干酪根就像煤一样,是一种原始能量来源,其资源基础量巨大,但目前还没有证实在经济上具有可行性,因此没有储量估算,有些项目,如在科罗拉多州西北部,UNOCAL公司(美国加利福尼亚联合油公司)在伞溪(Parachute Creek)现场已生产了一定量的页岩油(shale oil),但这种生产有一定的项目补助费用,如价格保证等等。从干酪根中生产合成原油,目前技术上还存在着一系列障碍,从长远看,成本效率比还不够理想。如果油气资源衰竭,能源价格又回升到能源危机期间的水平,就有可能对这种资源进行大规模开发。不过能源价格真要高到那种程度,也可能引发其他资源的商业化生产。
生物燃料
生物燃料是最新消亡的生物化学能,这种原始能量来源评价起来较为复杂。某些作者坚持不考虑“农业废产品”的应用而夸大生物燃料的资源基础,另外一些作者则无视过去及当前生物燃料对人类所作的贡献。其实,1880年煤出现以前,生物燃料一直是人类的主要燃料(注13),目前仍有一半左右的人口依靠生物燃料满足能量需求,但这些人大部分是穷人,能量需求很低,以至于很多能源分析家们忽视了生物燃料的贡献。而另有一些专家认为所有生物燃料的总能量是人类目前工业化生产出的能源量的15到20倍,“他们还指出,生物燃料中只有一小部分具备提供能量的潜力”,如果要保证可持续性,生物燃料的年消耗量必须低于年生长量(这是必须的,因为除用作燃料外,这些生物还有许多其他用途,其中包括给人类、牲畜和野生动物提供食物)。据估计,地球上植物生长总量的能量含量约为3000× 1015英热单位,其中23%在沼泽、草地、苔原地带;29%在森林中,10%在庄稼地中,38%来自于水生植物系统。
有几种逻辑假设可以说明生物能量的产量,进而判定生物燃料是否真的具有可持续性。国际应用系统分析协会(IIASA)的一项研究表明:陆地上生长的植物,可“谨慎栽植”的最多可达40%,其结果是可获取750夸特的能量;但庄稼和木材占了其中56%。剩下330夸特能量,另外还有60夸特可以从农业和木材业的废弃物中获得。考虑到能量转换效率一般低于50%,假如管理和生产工艺到位(注14),也只能从中获得180夸特的能量。由于基础资源量可以不考虑可复原性或效率,则年度总的资源基础应该是390夸特。
有人可能会反驳说:栽培方法的改进会提高年产出,但让农业获得高产的一些作法本身也非常耗能,在计算植物燃料的总储量时,应该考虑收割和运输过程中的损失。再者,即使在森林中,这种生物量中也有一大部分不是木质燃料,其中包括野生动物、小的植物、微生物等。如果进行彻底采伐,意味着将陆地剥光,对环保极为不利。
如果将大量的生物燃料的资源基础转换成储量,再来讨论这一问题,则必须考虑土地的最佳利用(best use)和生物资源。社会各界已经越来越强烈地意识到环境问题,IIASA的研究也表明60%的陆地植物不适用于能量生产,这也可能是基于地域原因(北极苔原植物分布零散,难以有效采集)或环保考虑(保留一部分原始森林),无论出于哪种原因,各种数据都表明,可用的生物燃料已动用了一半以上。还有一点应该注意的是,将所有农业废弃物和森林生长生物收割殆尽对环境极为不利,田间及森林地表的残渣和断茬必不可少,可以防止土壤受侵蚀,支撑那些消化有机物的小的生命形式,对土壤极为有利。
自己不可以拆除的,为了汽车安全,应该去专业的汽修厂维修拆除。
发动机打的固定孔不用管它。
还有就是发动机缸套、活塞环、气门最好检查一下,烧气磨损比汽油大,而且气门容易结焦,严重者会造成事故。而且ECU也要重新调过,不然油耗怕很大。
扩展资料:
一般来说,价格在20万元以上的中高级车以及一些越野车,没必要改气,因为这类车子对喷油量、喷油时间等的控制非常精确,在用油上会根据情况进行调节,而且一旦改了气,还可能影响发动机智能控制系统的正常工作。
另外,用车频率低的车主也没必要改气。私车作为上下班之用,每年的行驶里程一般在两万公里左右,但是油改气的费用要支付四五千到七八千元,所以要跑很长时间才能收回这部分改装的成本。这对于用车频率低的车主来说,并不划算。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。